A Systematic Approach for Test Effort Estimation Model Selection

Ulrike Dowie, Lars Karg
SAP AG

Software & Systems Quality Conferences
25. April 2007
Motivation and Aims of Our Approach

Criteria to Examine Existing Models

Selection Approach

A Partly Fictitious Case Study

Evaluation
Motivation and Aims

- Deadlines and budgets are missed
- ”Guesstimation” is apparently inadequate to plan test
- Models and methods for test effort estimation exist, but …

Which one to choose?

Aims: Develop a systematic selection approach
- Tailored to domain, organization, and project
- To facilitate comparison between existing models or methods
- To reduce selection effort after first use of the approach
- To select systematically and objectively
Conceptual Framework

Support Assessment and Selection

Test Goals

Test Parameters

Influence

Result In

Test Restrictions

Affect

Test Techniques Efficiency and Effects

Support and Help to Reach
Criteria to Examine Existing Models

Selection Approach

A Partly Fictitious Case Study

Evaluation
1. Requirements on the model

- **Falsifiability**
 Assumptions, hypotheses can be refuted by experience
 → portability

- **Objectivity**
 Model is based on formal process, different persons arrive at the same results

- **Model maturity**
 Number of practical applications, diversity of application:
 e.g., number of different organizations, different domains

- **Usage experience**
 User satisfaction → model use continued

- **Usability**
 Comprehensibility, adaptability, applicability

- **Project control**
 Feedback loop, alternative actions suggested?

- **Programming language independence**
2. Match models and organizational context/project

Goals
- Is a goal-oriented process modeled?
- Can model user choose among different goals?

Restrictions and parameters
- Process model, programming language, available tool support
- Historical data quality and quantity (metrics, number of projects, etc.)
- Human resources (statistical knowledge, experience, etc.)
- Test characteristics (comparability of test cases, structural versus functional testing, etc.)

Assumptions concerning effects
- Are assumptions valid in the organizational/project context?
- Results traceable back to causes
Selection Approach

- Preparation
 - Test Effort Estimation Models (TEEMs)
- Domain Restrictions
- TEEMs Applicable to Domain
- Org. Goals & Restrictions
- TEEMs Applicable to Organization
- Project Goals, Restrictions & Parameters
- TEEMs Applicable to Project with Ranking
Motivation and Aims of Our Approach

Criteria to Examine Existing Models

Selection Approach

A Partly Fictitious Case Study

Evaluation
Case Study (1/4)

Preparation

- Search for Test Effort Estimation Models (TEEMs)
- Analysis of TEEMs according to criteria (see next slide)

Determination of critical criteria

- Falsifiable (assumptions can be checked against real conditions)
- Usage experience: must be positive (model is still being used)
- Model maturity: practically applied
- Understandable: estimation results must be traceable
- Adaptability: parameter determination must be clear
- Language independent

Feedback loop to control test efforts: nice to have
Case Study (2/4)

<table>
<thead>
<tr>
<th>Models</th>
<th>Model Is falsifiable</th>
<th>Model Is objective</th>
<th>Usage Experience</th>
<th>Model Maturity</th>
<th>Usability</th>
<th>PC</th>
<th>Language Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calzolari (1998)</td>
<td>no</td>
<td>yes</td>
<td>low</td>
<td>3</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Cangussu (2002)</td>
<td>no</td>
<td>no</td>
<td>low</td>
<td>4</td>
<td>no</td>
<td>pa.</td>
<td>no</td>
</tr>
<tr>
<td>Nageswaran (2001)</td>
<td>no</td>
<td>no</td>
<td>medium</td>
<td>3</td>
<td>yes</td>
<td>pa.</td>
<td>yes</td>
</tr>
<tr>
<td>Pensyl (2002)</td>
<td>partly</td>
<td>no</td>
<td>low</td>
<td>2</td>
<td>yes</td>
<td>pa.</td>
<td>no</td>
</tr>
<tr>
<td>Singpurwalla (1991)</td>
<td>partly</td>
<td>yes</td>
<td>none</td>
<td>1</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Sneed (2006)</td>
<td>no</td>
<td>no</td>
<td>medium</td>
<td>2</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Case Study (3/4)

Domain restrictions

- Competitive situation: supplier oligopoly → budget and schedule constraints must be kept
- Bug corrections possible after market release
- Highly variable product usage → not all process chains can be tested → prioritization of test cases is important

Organizational goals (especially regarding TEEMs)

- Model results as additional input for resource planning → model must be applicable early in the product life cycle

Organizational restrictions (especially regarding TEEMs)

- Development process: variant of the V-model
- Languages: object-oriented
- Test cases: project-specific → extent/coverage not comparable
- Use case/function point counts: not available
Fulfillment of critical criteria
- No model is entirely falsifiable → use partly falsifiable models
- One model with positive usage experience → select for further analysis

Matching models with domain restrictions
- Competitive situation → budget and schedule constraints are considered by the remaining model

Matching models with organizational goals
- Model can be used early in the life cycle (requirements must be defined)

Matching models with organizational restrictions
- V-model is supported, object-oriented languages are supported
- Test cases should require similar effort → assumption violated

No TEEM fits domain and organizational restrictions
Motivation and Aims of Our Approach
Criteria to Examine Existing Models
Selection Approach
A Partly Fictitious Case Study
Evaluation
Evaluation: Benefits and Use of the Approach

Organizational and project goals need to be identified
- Missing or unclear goals become obvious
- Valuable input for project team’s work

Time dedicated to test effort estimation
- Reasonable, detailed effort estimation is facilitated

Effort estimation not a single person’s task but a group task
- Objectivity instead of subjectivity
- Activities won’t be forgotten as easily (due to cross-checks)

Project, product, and team characteristics required as input
- Project is analyzed more thoroughly and carefully

More reliable test effort estimation
(even when no model is appropriate)
Evaluation: Lessons Learned

- Identify **successfully applied** models only (practical application by itself is insufficient)

- Use **elimination criteria** instead of preselection at domain level

- Contact peers (other software developing organizations) and **share experience** regarding test effort estimation models

- Evaluate **local influencing factors** of the test effort
 - Collect data
 - Interview long-time experienced test coordinators/managers
 - Analyze project data and interviews (graphically, statistically)
Evaluation: Further Research Directions

Framework needs to be applied in several projects
- To reduce time required
- To find objective measurements to replace subjective measurements
- To extend or reduce requirements

More models need to be identified and analyzed
- Falsifiable models: not pretending general applicability, allowing to determine all parameter values locally
- Successfully applied models

Analytical models explaining test effort and its influencing factors are needed
- To be cross-checked in the organization
Bibliography

